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1. Introduction

Early ideas of ’t Hooft [1] and the experimental evidence for stringy behavior in hadronic

physics suggested that aspects of the strong interaction can be described, predicted, and

understood using a (not yet known) string theory. These ideas started to materialize

when the Maldacena conjecture (also known as AdS/CFT correspondence) and some of its

refinements were formulated [2 – 5]. Indeed, a (3+1)-dimensional field theory was shown

to contain strings that captured non-perturbative and perturbative physics. The downside

was that the field theory in question (N = 4 SYM) was not of immediate relevance to

hadronic physics. The necessity of finding extensions of these ideas to phenomenologically

more interesting field theories was then well motivated.

A very fruitful extension of the AdS/CFT correspondence stems from studying branes

at conical singularities, of which the case of D3-branes on conifolds is a particular example

presenting especially rich dynamics. The study of this system was developed in a list

of many interesting papers: those that have been more influential to the present work

are [6 – 15].

In this paper, we will consider the addition of new degrees of freedom to the Klebanov-

Tseytlin (KT) [9] and Klebanov-Strassler (KS) [10] solutions. These new excitations will be

incorporated in the form of D7 flavor branes, corresponding to fundamental matter in the
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dual field theory. Unlike the color branes, which disappear in the geometric transition and

are substituted by closed string fluxes, the flavor branes appear explicitly in our solutions:

they correspond to the open strings which are suggested by Veneziano’s topological expan-

sion of large N gauge theories [16]. The addition of flavors to these field theories was first

considered in [17 – 19]. We will follow ideas introduced in [17], but will consider the case

in which the number of fundamental fields is of the same order as the number of adjoint

or bifundamental fields, that is Nf ∼ Nc. This means that the new (strongly coupled)

dynamics of the field theory is captured by a background that includes the backreaction

of the flavor branes. In order to find the new solutions, we follow the ideas and techniques

of [20 – 23].

Let us describe the main achievements of this paper. We will present analytic solutions

for the equations of motion of Type IIB supergravity coupled to the DBI+WZ action of

the flavor D7-branes that preserve minimal SUSY in four dimensions; we show how to

reduce these solutions to those found by Klebanov-Tseytlin/Strassler when the number of

flavors is taken to zero. Using them, we make a precise matching between the field theory

cascade (that, enriched by the presence of the fundamentals, is still self-similar) and the

string predictions. We will also match anomalies and beta functions by using our new

supergravity background. There is a variety of other field theory observables that can be

predicted by our solutions, and will be presented in a future publication [24], where also

many technical details and nice subtleties of the present paper will be explained.

The organization of this paper is as follows. In section 2 we present the setup, the

ansatz and the strategy to find supersymmetric solutions of the Bianchi identities and

equations of motion. We also introduce the notion of the so-called Page charges and

we analyze their values in our particular ansatz. In sections 3 and 4 we present two main

solutions, which reflect the addition of flavors to the KS and KT backgrounds, respectively.

In section 5 we present the dual field theory and propose that its RG flow can be understood

in terms of a cascade of Seiberg dualities. In section 6 we show that the duality cascade is

encoded in our supergravity solutions, by comparing ranks of the groups in field theory with

effective charges in supergravity, and matching R-anomalies and beta functions of gauge

couplings on both sides of the gauge/gravity duality. The behavior of the background in

the UV of the gauge theory suggests that the field theory generates a ‘duality wall’. We

also give a nice picture of Seiberg duality as a large gauge transformation in supergravity.

We close the paper with possible future directions in section 7.

2. The setup and the ansatz

We are interested in adding to the KT/KS cascading gauge theory [9, 10] a number of flavors

(fundamental fields) comparable with the number of colors (adjoint and bifundamental

fields). Those supergravity backgrounds were obtained by considering a stack of regular

and fractional D3-branes at the tip of the conifold. After the geometric transition, the

color branes disappear from the geometry, but the closed string fluxes they sourced remain

nontrivial. The addition of flavors in the field theory, in the large N limit considered by

Veneziano [16], amounts to introduce mesonic currents and internal quark loops in the
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planar diagrams that survive ’t Hooft’s double scaling limit [1]: Feynman diagrams in

Veneziano’s limit arrange in a topological expansion reminiscent of the loop expansion of

an open and closed string theory, where the new open string sector arises from loops of

flavor fields in the field theory. The dual string picture of Veneziano’s large N limit involves

the addition of backreacting ‘flavor’ branes to the backgrounds which describe the ’t Hooft

limit of some gauge theories.

Let us then consider a system of type IIB supergravity plus Nf D7-branes. The

dynamics of the latter will be governed by the corresponding Dirac-Born-Infeld and Wess-

Zumino actions. Our solution will have a non-trivial metric and dilaton φ and, as in any

cascading background, non-vanishing RR three- and five-forms F3 and F5, as well as a

non-trivial NSNS three-form H3. In addition, the D7-branes act as a source for (the Hodge

dual of) the RR one-form F1 through the WZ coupling:

SD7
WZ = T7

∑

Nf

∫

M8

Ĉ8 + · · · , (2.1)

which generically induces a violation of the Bianchi identity dF1 = 0. Therefore our

configuration will also necessarily have a non-vanishing value of F1. The ansatz we shall

adopt for the Einstein frame metric is the following:

ds2 =
[

h(r)
]− 1

2

dx2
1,3 +

[

h(r)
]

1

2

[

dr2 + e2G1(r)(σ2
1 + σ2

2) +

+e2G2(r)

(

(ω1 + g(r)σ1)
2 + (ω2 + g(r)σ2)

2

)

+
e2G3(r)

9

(

ω3 + σ3)
2

]

, (2.2)

where dx2
1,3 denotes the four-dimensional Minkowski metric and σi and ωi (i = 1, 2, 3)

are one-forms that can be written in terms of five angular coordinates (θ1, ϕ1, θ2, ϕ2, ψ) as

follows:

σ1 = dθ1, σ2 = sin θ1dϕ1, σ3 = cos θ1dϕ1,

ω1 = sinψ sin θ2dϕ2 + cos ψdθ2, ω2 = − cos ψ sin θ2dϕ2 + sin ψdθ2,

ω3 = dψ + cos θ2dϕ2. (2.3)

Notice that our metric ansatz (2.2) depends on five unknown radial functions Gi(r) (i =

1, 2, 3), g(r) and h(r). The ansatz for F5 has the standard form, namely:

F5 = dh−1(r) ∧ dx0 ∧ · · · ∧ dx3 + Hodge dual . (2.4)

As expected for flavor branes, we will take D7-branes extended along the four Minkowski

coordinates as well as other four internal coordinates. The κ-symmetric embedding of the

D7-branes we start from will be discussed in section 5. In order to simplify the computa-

tions, following the approach of [23], we will smear the D7-branes in their two transverse

directions in such a way that the symmetries of the unflavored background are recovered.

As explained in [23], this smearing amounts to the following generalization of the WZ term

of the D7-brane action:

SD7
WZ = T7

∑

Nf

∫

M8

Ĉ8 + · · · → T7

∫

M10

Ω ∧ C8 + · · · , (2.5)
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where Ω is a two-form which determines the distribution of the RR charge of the D7-brane

and M10 is the full ten-dimensional manifold. Notice that Ω acts as a magnetic charge

source for F1 which generates a violation of its Bianchi identity. Actually, from the equation

of motion of C8 one gets:

dF1 = −Ω. (2.6)

In what follows we will assume that the flavors introduced by the D7-brane are massless,

which is equivalent to require that the flavor brane worldvolume reaches the origin in the

holographic direction. Under this condition one expects a radial coordinate independent

D7-brane charge density. Moreover, the D7-brane embeddings that we will smear imply

that Ω is symmetric under the exchange of the two S2’s parameterized by (θ1, ϕ1) and

(θ2, ϕ2), and independent of ψ (see section 5). The smeared charge density distribution is

the one already adopted in [23], namely:

dF1 = −Nf

4π
(sin θ1dθ1 ∧ dϕ1 + sin θ2dθ2 ∧ dϕ2) =

Nf

4π
(ω1 ∧ ω2 − σ1 ∧ σ2), (2.7)

where the coefficient Nf/4π is determined by normalization. With this ansatz for Ω the

modified Bianchi identity (2.6) determines the value of F1, namely:

F1 =
Nf

4π
(ω3 + σ3). (2.8)

The ansatz for the RR and NSNS 3-forms that we propose is an extension of the one

given by Klebanov and Strassler and it is simply (in this paper we set for convenience

α′ = 1):

B2 =
M

2

[

fg1 ∧ g2 + kg3 ∧ g4
]

,

H3 = dB2 =
M

2

[

dr∧(f ′g1∧g2 + k′g3∧g4) +
1

2
(k − f)g5∧(g1∧g3 + g2∧g4)

]

,

F3 =
M

2

{

g5∧
[(

F +
Nf

4π
f

)

g1∧g2+

(

1−F +
Nf

4π
k

)

g3∧g4

]

+F ′dr∧
(

g1∧g3+g2∧g4
)

}

,

(2.9)

where M is a constant, f(r), k(r) and F (r) are functions of the radial coordinate, and the

gi’s are the set of one-forms

g1 =
1√
2
(ω2 − σ2), g2 =

1√
2
(−ω1 + σ1),

g3 =
−1√

2
(ω2 + σ2), g4 =

1√
2
(ω1 + σ1),

g5 = ω3 + σ3. (2.10)

The forms F3, H3 and F5 must satisfy the following set of Bianchi identities:

dF3 = H3 ∧ F1, dH3 = 0, dF5 = H3 ∧ F3. (2.11)

Notice that the equations for F3 and H3 are automatically satisfied by our ansatz (2.9).

However, the Bianchi identity for F5 gives rise to the following differential equation:

d

dr

[

h′e2G1+2G2+G3

]

= −3

4
M2

[(

1 − F +
Nf

4π
k

)

f ′ +

(

F +
Nf

4π
f

)

k′ + (k − f)F ′

]

, (2.12)
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which can be integrated, with the result:

h′e2G1+2G2+G3 = −3

4
M2

[

f − (f − k)F +
Nf

4π
fk

]

+ constant. (2.13)

Let us now parameterize F5 as

F5 =
π

4
Neff(r)g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 + Hodge dual, (2.14)

and let us define the five-manifold M5 as the one that is obtained by taking the Minkowski

coordinates and r fixed to a constant value. As
∫

M5
F5 = (4π2)2Neff(r), it follows that

Neff(r) can be interpreted as the effective D3-brane charge at the value r of the holographic

coordinate. From our ansatz (2.4), it follows that:

Neff(r) = − 4

3π
h′e2G1+2G2+G3 , (2.15)

and taking into account (2.13), we can write

Neff(r) ≡ 1

(4π2)2

∫

M5

F5 = N0 +
M2

π

[

f − (f − k)F +
Nf

4π
fk

]

, (2.16)

where N0 is a constant. It follows from (2.16) that the RR five-form F5 is determined

once the functions F , f and k that parameterize the three-forms are known. Moreover,

eq. (2.13) allows to compute the warp factor once the functions Gi and the three-forms are

determined. Notice also that the effective D5-brane charge is obtained by integrating the

gauge-invariant field strength F3 over the 3-cycle S3: θ2 = const., ϕ2 = const.. The result

is:

Meff(r) ≡ 1

4π2

∫

S3

F3 = M

[

1 +
Nf

4π
(f + k)

]

. (2.17)

The strategy to proceed further is to look at the conditions imposed by supersymmetry.

We will smear, as in [23], D7-brane embeddings that are κ-symmetric and, therefore, the

supersymmetry requirement is equivalent to the vanishing of the variations of the dilatino

and gravitino of type IIB supergravity under supersymmetry transformations. These con-

ditions give rise to a large number of BPS first order ordinary differential equations for the

dilaton and the different functions that parameterize the metric and the forms. In the end,

one can check that the first order differential equations imposed by supersymmetry imply

the second order differential equations of motion. In particular, from the variation of the

dilatino we get the following differential equation for the dilaton:

φ′ =
3Nf

4π
eφ−G3 . (2.18)

A detailed analysis of the conditions imposed by supersymmetry shows that the fibering

function g in eq. (2.2) is subjected to the following algebraic constraint:

g
[

g2 − 1 + e2(G1−G2)
]

= 0, (2.19)
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which has obviously two solutions. The first of these solutions is g = 0 and, as it is

clear from our metric ansatz (2.2), it corresponds to the cases of the flavored singular and

resolved conifolds. In the second solution g is such that the term in brackets on the right-

hand side of (2.19) vanishes. This solution gives rise to the flavored version of the warped

deformed conifold. The flavored KT solution will be presented in section 4, whereas the

flavored KS solution will be analyzed in section 3.

2.1 Maxwell and Page charges

Before presenting the explicit solutions for the metric and the forms of the supergravity

equations, let us discuss the different charges carried out by our solutions. In theories,

like type IIB supergravity, that have Chern-Simons terms in the action (which give rise

to modified Bianchi identities), it is possible to define more than one notion of charge

associated with a given gauge field. Let us discuss here, following the presentation of

ref. [25], two particular definitions of this quantity, namely the so-called Maxwell and Page

charges [26]. Given a gauge invariant field strength F8−p, the (magnetic) Maxwell current

associated to it is defined through the following relation:

dF8−p = ⋆jMaxwell
Dp

, (2.20)

or equivalently, the Maxwell charge in a volume V9−p is given by:

QMaxwell
Dp

∼
∫

V9−p

⋆jMaxwell
Dp

, (2.21)

with a suitable normalization. Taking ∂V9−p = M8−p and using (2.20) and Stokes theorem,

we can rewrite the previous expression as:

QMaxwell
Dp

∼
∫

M8−p

F8−p. (2.22)

This notion of current is gauge invariant and conserved and it has other properties

that are discussed in [25]. In particular, it is not “localized” in the sense that for a solution

of pure supergravity (for which dF8−p = H3 ∧ F6−p) this current does not vanish. These

are the kind of charges we have calculated so far (2.16)–(2.17), namely:

QMaxwell
D5 = Meff =

1

4π2

∫

F3,

QMaxwell
D3 = Neff =

1

(4π2)2

∫

F5. (2.23)

An important issue regarding these charges is that, in general, they are not quantized.

Indeed, we have checked explicitly that QMaxwell
D5 = Meff and QMaxwell

D3 = Neff vary continu-

ously with the holographic variable r (see eqs. (2.17) and (2.16)).

Let us move on to the notion of Page charge. The idea is first to write the Bianchi

identities for F3 and F5 as the exterior derivatives of some differential form, which in general

will not be gauge invariant. Page currents can then be introduced as magnetic sources on

– 6 –



J
H
E
P
0
9
(
2
0
0
7
)
1
0
9

the right-hand side, thus violating the Bianchi identities. In our case, we can define the

following (magnetic) Page currents:

d(F3 − B2 ∧ F1) = ⋆jPage
D5 ,

d

(

F5 − B2 ∧ F3 +
1

2
B2 ∧ B2 ∧ F1

)

= ⋆jPage
D3 .

(2.24)

Notice that the currents defined by the previous expression are “localized” as a consequence

of the Bianchi identities satisfied by F3 and F5, namely dF3 = H3 ∧F1 and dF5 = H3 ∧F3.

The Page charges QPage
D5 and QPage

D3 are just defined as the integrals of ⋆jPage
D5 and ⋆jPage

D3

with the appropriate normalization, i.e.:

QPage
D5 =

1

4π2

∫

V4

⋆jPage
D5 ,

QPage
D3 =

1

(4π2)2

∫

V6

⋆jPage
D3 ,

(2.25)

where V4 and V6 are submanifolds in the transverse space to the D5- and D3-branes re-

spectively, which enclose the branes. By using the expressions of the currents ⋆jPage
D5 and

⋆jPage
D3 given in (2.24), and by applying Stokes theorem, we get:

QPage
D5 =

1

4π2

∫

S3

(

F3 − B2 ∧ F1

)

,

QPage
D3 =

1

(4π2)2

∫

M5

(

F5 − B2 ∧ F3 +
1

2
B2 ∧ B2 ∧ F1

)

,

(2.26)

where S3 and M5 are the same manifolds used to compute the Maxwell charges in

eqs. (2.17) and (2.16). It is not difficult to establish the topological nature of these Page

charges. Indeed, let us consider, for concreteness, the expression of QPage
D5 in (2.26). Notice

that the three-form under the integral can be locally represented as the exterior derivative

of a two-form, since F3 − B2 ∧ F1 = dC2, with C2 being the RR two-form potential. If C2

were well-defined globally on the S3, the Page charge QPage
D5 would vanish identically as a

consequence of Stokes theorem. Thus, QPage
D5 can be naturally interpreted as a monopole

number and it can be non-vanishing only in the case in which the gauge field is topologically

non-trivial. For the D3-brane Page charge QPage
D3 a similar conclusion can be reached.

Due to the topological nature of the Page charges defined above, one naturally ex-

pects that they are quantized and, as we shall shortly verify, they are independent of the

holographic coordinate. This shows that they are the natural objects to compare with

the numbers of branes that create the geometry in these backgrounds with varying flux.

However, as it is manifest from the fact that QPage
D5 and QPage

D3 are given in (2.26) in terms

of the B2 field and not in terms of its field strength H3, the Page charges are not gauge

invariant. In subsection 6.2 we will relate this non-invariance to the Seiberg duality of the

field theory dual.

Let us now calculate the associated Page charges for our ansatz (2.9) . We shall start by

computing the D5-brane Page charge for the three-sphere S3 defined by θ2, ϕ2 = constant.

– 7 –
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We already know the value of the integral of F3, which gives precisely Meff (see eq. (2.17)).

Taking into account that

∫

S3

g5 ∧ g1 ∧ g2 =

∫

S3

g5 ∧ g3 ∧ g4 = 8π2, (2.27)

we readily get:
1

4π2

∫

S3

B2 ∧ F1 =
MNf

4π
(f + k), (2.28)

and therefore:

QPage
D5 = Meff − MNf

4π
(f + k). (2.29)

Using the expression of Meff given in (2.17), we obtain:

QPage
D5 = M, (2.30)

which is certainly quantized and independent of the radial coordinate.

Let us now look at the D3-brane Page charge, which can be computed as an integral

over the angular manifold M5. Taking into account that

∫

M5

g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 = (4π)3, (2.31)

we get that, for our ansatz (2.9):

1

(4π2)2

∫

M5

B2 ∧ F3 =
M2

π

[

f − (f − k)F +
Nf

2π
fk

]

,

1

(4π2)2

∫

M5

B2 ∧ B2 ∧ F1 =
M2

π

Nf

2π
fk,

(2.32)

and, thus

QPage
D3 = Neff − M2

π

[

f − (f − k)F +
Nf

4π
fk

]

, (2.33)

and, using the expression of Neff , we obtain

QPage
D3 = N0, (2.34)

which is again independent of the holographic coordinate. Recall that these Page charges

are not gauge invariant and we will study in subsection 6.2 how they change under a large

gauge transformation.

We now proceed to present the solutions to the BPS equations of motion.

3. Flavored warped deformed conifold

Let us now consider the following solution of the algebraic constraint (2.19):

g2 = 1 − e2(G1−G2). (3.1)

– 8 –
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In order to write the equations for the metric and dilaton in this case, let us perform the

following change of variable:

3e−G3dr = dτ. (3.2)

In terms of this new variable, the differential equation for the dilaton is simply:

φ̇ =
Nf

4π
eφ, (3.3)

where the dot means derivative with respect to τ . This equation can be straightforwardly

integrated, namely:
Nf

4π
eφ =

1

τ0 − τ
, 0 ≤ τ ≤ τ0, (3.4)

where τ0 is an integration constant. Let us now write the equations imposed by supersym-

metry to the metric functions G1, G2 and G3, which are:

Ġ1 −
1

18
e2G3−G1−G2 − 1

2
eG2−G1 +

1

2
eG1−G2 = 0,

Ġ2 −
1

18
e2G3−G1−G2 +

1

2
eG2−G1 − 1

2
eG1−G2 = 0,

Ġ3 +
1

9
e2G3−G1−G2 − eG2−G1 +

Nf

8π
eφ = 0. (3.5)

In order to write the solution of this system of equations, let us define the following function

Λ(τ) ≡

[

2(τ − τ0)(τ − sinh 2τ) + cosh(2τ) − 2ττ0 − 1
]

1

3

sinh τ
. (3.6)

Then, the metric functions Gi are given by:

e2G1 =
1

4
µ

4

3
sinh2 τ

cosh τ
Λ(τ), e2G2 =

1

4
µ

4

3 cosh τΛ(τ),

e2G3 = 6µ
4

3
τ0 − τ
[

Λ(τ)
]2 , (3.7)

where µ is an integration constant. Notice that the range of τ variable chosen in (3.4) is

the one that makes the dilaton and the metric functions real. Moreover, for the solution

we have found, the fibering function g is given by:

g =
1

cosh τ
. (3.8)

By using this result, we can write the metric as:

ds2 =
[

h(τ)
]− 1

2

dx2
1,3 +

[

h(τ)
]

1

2

ds2
6, (3.9)

where ds2
6 is the metric of the ‘flavored’ deformed conifold, namely

ds2
6 =

1

2
µ

4

3 Λ(τ)

[

4(τ0 − τ)

3Λ3(τ)

(

dτ2 + (g5)2
)

+ cosh2

(

τ

2

)

(

(g3)2 + (g4)2
)

+

+ sinh2

(

τ

2

)

(

(g1)2 + (g2)2
)

]

. (3.10)
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Notice the similarity between the metric (3.10) and the one corresponding to the ‘unfla-

vored’ deformed conifold [10]. To further analyze this similarity, let us study the Nf → 0

limit of our solution. By looking at the expression of the dilaton in (3.4), one realizes that

this limit is only sensible if one also sends τ0 → +∞ with Nf τ0 fixed. Indeed, by performing

this scaling and neglecting τ versus τ0, one gets a constant value for the dilaton. Moreover,

the function Λ(τ) reduces in this limit to Λ(τ) ≈ (4τ0)
1

3 K(τ), where K(τ) is the function

appearing in the metric of the deformed conifold, namely:

K(τ) =

[

sinh 2τ − 2τ
]

1

3

2
1

3 sinh τ
. (3.11)

By using this result one easily verifies that, after redefining µ → µ/(4τ0)
1

4 , the metric (3.10)

reduces to the one used in [10] for the unflavored system.

The requirement of supersymmetry imposes the following differential equations for the

functions k, f and F appearing in the fluxes of our ansatz:

k̇ = eφ

(

F +
Nf

4π
f

)

coth2 τ

2
,

ḟ = eφ

(

1 − F +
Nf

4π
k

)

tanh2 τ

2
,

Ḟ =
1

2
e−φ(k − f). (3.12)

Notice, again, that for Nf = 0 the system (3.12) reduces to the one found in [10]. Moreover,

for Nf 6= 0 this system can be solved as:

e−φf =
τ coth τ − 1

2 sinh τ
(cosh τ − 1), e−φk =

τ coth τ − 1

2 sinh τ
(cosh τ + 1),

F =
sinh τ − τ

2 sinh τ
, (3.13)

where eφ is given in eq. (3.4). By using the solution given by (3.7) and (3.13) in the general

eq. (2.13) we can immediately obtain the expression of the warp factor h(τ). Actually, if

we require that h is regular at τ = 0, the integration constant N0 in (2.16) must be chosen

to be zero. In this case, we get:

h(τ) = − 2πM2

µ8/3Nf

∫ τ

dx
x coth x − 1

(x − τ0)2 sinh2 x

− cosh 2x + 4x2 − 4xτ0 + 1 − (x − 2τ0) sinh 2x

(cosh 2x + 2x2 − 4xτ0 − 1 − 2(x − τ0) sinh 2x)2/3
.

(3.14)

The integration constant can be fixed by requiring that the analytic continuation of h(τ)

goes to zero as τ → +∞, to connect with the Klebanov-Strassler solution in the unflavored

(scaling) limit. Then, close to the tip of the geometry, h(τ) ∼ h0 −O(τ2).

We should emphasize now an important point: even though at first sight this solution

may look smooth in the IR (τ ∼ 0), where all the components of our metric approach the

same limit as those of the KS solution (up to a suitable redefinition of parameters), there

is actually a curvature singularity.
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Let us analyse the singularity in more detail. By inserting the τ → 0+ expansion

Λ(τ) =
(τ0

3

)
1

3

[

2 − 1

2τ0
τ + O(τ2)

]

(3.15)

into the metric of the flavored warped deformed conifold solution, one obtains the following

Taylor expansion of the 10d metric:

ds2
10 =[h(τ)]−

1

2 dx2
1,3 + [h(τ)]

1

2 ds2
6

ds2
6 =

1

4

(

2

3

)
1

3

ǫ
4

3

[

f2(τ)dτ2 + τ2l2(τ)
1

2

[

(g1)2 + (g2)2
]

]

+

+
1

2

(

2

3

)
1

3

ǫ
4

3

[

p2(τ)
1

2
(g5)2 + q2(τ)

[

(g3)2 + (g4)2
]

]

,

(3.16)

where

f(τ) = p(τ) = 1 − 1

4τ0
τ + O(τ2)

l(τ) = q(τ) = 1 − 1

8τ0
τ + O(τ2)

h(τ) = h0 + O(τ2)

(3.17)

when τ → 0+. Compare these expansions with the KS solution [10], where f = l = p = q =

1+O(τ2) and h = h0 +O(τ2), resulting in a geometry which is locally R
1,3 ×R

3 ×S3 near

τ = 0. In the flavored warped deformed conifold solution, the scalar curvature in Einstein

frame has the following Laurent expansion around τ = 0:

RE = 2
11

3 3
1

3 ǫ−
4

3 h
− 1

2

0

[

2f ′(0) − 4l′(0) − p′(0) − 2q′(0)
] 1

τ
+ O(1) . (3.18)

The cancellation between the first two terms inside the square brackets means that the

dτ -g1-g2 part of the metric approaches smoothly R
3 and that the singularity comes from

the O(τ) corrections which fiber the g3-g4-g5 part over R
3 in a singular fashion.1 A simple

example of such a kind of singularity due to the fibration appears in a 3-dimensional

manifold whose metric is ds2 = dr2 + r2dϕ2 + (1 + ar)dϕ̃2 at r = 0. The fibration of the

ϕ̃-circle over the radial coordinate of the R
2 is singular: the scalar curvature scales like

R ∼ −a/r as r → 0.

In order to compute the strength of the curvature singularity in our solution, recall

that τ0, Nf and the value φ0 of the dilaton at τ = 0 are related by

τ0Nf = 4πe−φ0 . (3.19)

φ0 is kept fixed in the unflavored limit Nf → 0. The value of the warp factor at τ = 0 can

be written, for large values of τ0, as

h0 ≃ 27/3πτ
2/3
0

ǫ8/3

M2

Nf

c0

τ
5/3
0

, (3.20)

1Indeed, one can perform a local change of radial coordinate u = τ (1− 1

8τ0

τ +O(τ 2)) and move the first

order corrections to the metric only in front of the g3-g4-g5 part. Second order corrections in the radial

coordinate do not introduce any singularity.
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where c0 is a finite number, which does not depend on τ0 at leading order (−c0τ
−5/3
0 is the

leading contribution to the integral in (3.14) for τ = 0 when τ0 is large). Plugging (3.20)

inside (3.18) yields the following scaling of the scalar curvature close to the singularity:

RE ≃ 21/231/3

π

Nf

M
c
−1/2
0 eφ0/2 1

τ
+ O(1) . (3.21)

The solution presented above is naturally interpreted as the addition of fundamentals

to the KS background [10]. Correctly, the singularity disappears when the unflavored

limit Nf → 0, with φ0 fixed, is taken. The dual field theory interpretation in terms of

chromoelectric flux tube breaking of the curvature singularity at τ = 0 will be discussed in

detail in [24].

In the next section, we will present a solution that can be understood as the addition

of flavors to the KT background [9].

4. Fractional branes in the singular conifold with flavor

Let us now consider the solutions with g = 0. First of all, let us change the radial variable

from r to ρ, where the later is defined by the relation dr = eG3dρ. The equation for the

dilaton can be integrated trivially:

eφ = − 4π

3Nf

1

ρ
, ρ < 0. (4.1)

The supersymmetry requirement imposes now that the metric functions Gi satisfy in this

case the following system of differential equations:

Ġi =
1

6
e2G3−2Gi , (i = 1, 2),

Ġ3 = 3 − 1

6
e2G3−2G1 − 1

6
e2G3−2G2 − 3Nf

8π
eφ, (4.2)

where now the dot refers to the derivative with respect to ρ. This system is equivalent to

the one analyzed in [23] for the Klebanov-Witten model with flavors. In what follows we

will restrict ourselves to the particular solution with G1 = G2 given by:

e2G1 = e2G2 =
1

6
(1 − 6ρ)

1

3 e2ρ, e2G3 = −6ρ(1 − 6ρ)−
2

3 e2ρ. (4.3)

Notice that, as in [23], the range of values of ρ for which the metric is well defined is

−∞ < ρ < 0. The equations for the flux functions f , k and F are now:

ḟ − k̇ = 2eφḞ ,

ḟ + k̇ = 3eφ

[

1 +
Nf

4π
(f + k)

]

,

F =
1

2

[

1 +

(

e−φ − Nf

4π

)

(f − k)

]

. (4.4)
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In this paper, we will focus on the particular solution of this system such that f = k and

F is constant, namely:

F =
1

2
, f = k = − 2π

Nf

(

1 − Γ

ρ

)

, (4.5)

where Γ is an integration constant. By substituting these values of F , f and k in our

ansatz (2.9) we obtain the form of F3 and H. Notice that the constants M and Γ only

appear in the combination MΓ. Accordingly, let us define M as M ≡ MΓ. We will write

the result in terms of the function:

Meff(ρ) ≡ M
ρ

. (4.6)

One has:

F3 =
Meff(ρ)

4
g5 ∧

(

g1 ∧ g2 + g3 ∧ g4
)

,

H3 = − π

Nf

Meff (ρ)

ρ
dρ ∧

(

g1 ∧ g2 + g3 ∧ g4
)

.
(4.7)

Moreover, the RR five-form F5 can be written as in (2.14) in terms of the effective D3-brane

charge defined in (2.16). For the solution (4.5) one gets:

Neff(ρ) = N +
M2

Nf

1

ρ2
, (4.8)

where N ≡ N0− M2

Nf
. By using eq. (2.13), one can obtain the expression of the warp factor,

namely:

h(ρ) = −27π

∫

dρ

[

N +
M2

Nf

1

ρ2

]

e−4ρ

(1 − 6ρ)
2

3

. (4.9)

To interpret the solution just presented, it is interesting to study it in the deep IR region

ρ → −∞. Notice that in this limit the three-forms F3 and H3 vanish. Actually, it is easy

to verify that for ρ → −∞ the solution obtained here reduces to the one studied in [23],

corresponding to the Klebanov-Witten [6] model with flavors. Indeed, in this IR region it

is convenient to go back to our original radial variable r. The relation between r and ρ

for ρ → −∞ is r ≈ (−6ρ)
1

6 eρ. Moreover, one can prove that for ρ → −∞ (or equivalently

r → 0), the warp factor h and the metric functions Gi become:

h(r) ≈ 27πN

4

1

r4
, e2G1 = e2G2 ≈ r2

6
, e2G3 ≈ r2, (4.10)

which implies that the IR Einstein frame metric is AdS5×T 1,1 plus logarithmic corrections,

exactly as the solution found in [23]. The interpretation of the RG flow of the field theory

dual to this solution will be explained in sections 5 and 6.

Finally, let us stress that the UV behavior of this solution (coincident with that of the

solution presented in section 3) presents a divergent dilaton at the point ρ = 0 (or τ = τ0

for the flavored warped deformed conifold). Hence the supergravity approximation fails at

some value of the radial coordinate that we will associate in section 6 with the presence of

a duality wall [27] in the cascading field theory.
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5. The field theory with flavors: a cascade of Seiberg dualities

The field theory dual to our supergravity solutions can be engineered by putting stacks

of two kinds of fractional D3-branes (color branes) and two kinds of fractional D7-branes

(flavor branes) on the singular conifold. The smeared charge distribution introduced in the

previous sections can be realized by homogeneously distributing D7-branes among a class

of localized κ-symmetric embeddings. The (complex structure of the) deformed conifold

is described by one equation in C
4: z1z2 − z3z4 = ǫ2. This has isometry group SU(2)A ×

SU(2)B , where the non-abelian factors are realized through left and right multiplication on

the matrix
(

z1 z4
z3 z2

)

. We can also define a U(1)R action, which is a common phase rotation,

that is broken to Z2 by the deformation parameter ǫ. Consider the embedding [19]:

z3 + z4 = 0 . (5.1)

This is invariant under U(1)R and a diagonal SU(2)D (and a Z2 which exchanges z3 ↔ z4).

Moreover it is free of C8 tadpoles and it was shown to be κ-symmetric in [19]. It could

be useful to write it in the angular coordinates of the previous section: θ1 = θ2, ϕ1 = ϕ2,

∀ψ,∀τ . We can obtain other embeddings with the same properties by acting on it with the

broken generators. One can show that the charge distribution obtained by homogeneously

spreading the D7-branes in this class is (2.7):

Ω =
Nf

4π

(

sin θ1dθ1 ∧ dϕ1 + sin θ2dθ2 ∧ dϕ2

)

, (5.2)

where Nf is the total number of D7-branes.

Notice that one could have considered the more general embedding: z3 + z4 = m,

where m corresponds in field theory to a mass term for quarks. These embeddings and

their corresponding supergravity solutions are not worked out in this paper.

Different techniques have been developed to identify the field theory dual to our Type

IIB plus D7-branes background, which can be engineered by putting rl fractional D3-

branes of the first kind, rs fractional D3-branes of the second kind, Nfl fractional D7-

branes of the first kind, and Nfs fractional D7-branes of the second kind (l, s = 1, 2) on

the singular conifold, before the deformation has dynamically taken place. The properties

of the different kinds of fractional branes will be explained at the end of this section

and in section 6; what matters for the time being is that this brane configuration will

give rise to a field theory with gauge groups SU(rl) × SU(rs) and flavor groups SU(Nfl)

and SU(Nfs) for the two gauge groups respectively, with the matter content displayed in

figure 1. The most convenient technique for our purpose has been that of performing a

T-duality along the isometry (z1, z2) → (eiαz1, e
−iαz2) (one does not need the metric, only

the complex structure). The system is mapped into Type IIA: neglecting the common

spacetime directions, there is a NS5-brane along x4,5, another orthogonal NS5 along x8,9,

rl D4-branes along x6 (which is a compact direction) connecting them on one side, other rs

D4 connecting them on the other side, Nfl D6-branes along x7 and at a π
4 angle between

x4,5 and x8,9, touching the stack of rl D4-branes, and Nfs D6-branes along x7 and at a π
4

angle between x8,9 and x4,5, touching the stack of rs D4-branes . Then the spectrum is

directly read off, and the superpotential comes from the analysis of the moduli space [28].
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Ai
Q

Bj

Q̃

r1 r2

q̃

q

Nf1 Nf2

Figure 1: The quiver diagram of the gauge theory. Circles are gauge groups, squares are flavor

groups, and arrows are bifundamental chiral superfields. Nf1 and Nf2 sum up to Nf .

The field content of the gauge theory can be read from the quiver diagram of figure 1:

it is an extension of the Klebanov-Strassler field theory with nonchiral flavors for each

gauge group. The superpotential is2

W = λ(A1B1A2B2 − A1B2A2B1) + h1q̃(A1B1 + A2B2)q + h2Q̃(B1A1 + B2A2)Q+

+ αq̃qq̃q + βQ̃QQ̃Q .
(5.3)

The factors A1B1 + A2B2 directly descend from the embedding equation (5.1), while the

quartic term in the fundamental fields is derived from Type IIA. This superpotential explic-

itly breaks the SU(2)A ×SU(2)B global symmetry of the unflavored theory to SU(2)D , but

this global symmetry is recovered after the smearing (see [23] for a more careful treatment

of the smearing procedure). It’s worth here to stress that the smearing procedure does not

influence at all either the duality cascade, which is the main feature of our solutions that we

want to address here, nor (presumably) the infrared dynamics which will be investigated

in a forthcoming paper [24].

The Nf flavors are split into Nfl and Nfs groups, according to which gauge group

they are charged under. Both sets come from D7-branes along the embedding (5.1).3 The

only feature that discriminates between these two kinds of (fractional) D7-branes is their

coupling to the C2 and C4 gauge potentials. On the singular conifold, before the dynamical

deformation, there is a vanishing 2-cycle, living at the singularity, which the D7-branes are

wrapping.4 According to the worldvolume flux on it, the D7-branes couple either to one

or the other gauge group. Since this flux is stuck at the origin, far from the branes we can

only measure the D3, D5 and D7-charges produced. Unfortunately three charges are not

enough to fix four ranks. This curious ambiguity will show up again in section 6.

2Sums over gauge and flavor indices are understood.
3The embedding is in fact invariant under the Z2 (z3 ↔ z4) that exchanges the two gauge groups.
4Even though the D7-brane wraps the two-cycle living only at the singularity, out of the singularity it

still spans the four directions in the Calabi-Yau.
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5.1 The cascade

One can assume that, as in the unflavored case, the beta functions of the two gauge

couplings have opposite sign. When the gauge coupling of the gauge group with larger rank

is very large, one can go to a Seiberg-dual description [29]: remarkably, it’s straightforward

to see that the quartic superpotential is such that the field theory is self-similar, namely

the field theory in the dual description is a quiver gauge theory with the same field content

and superpotential, except for changes in the ranks of the groups.5

Let us define the theory at some energy scale to be an SU(rl) × SU(rs) gauge theory

(where l stands for the larger gauge group and s for the smaller: rl > rs), with flavor group

SU(Nfl) (SU(Nfs)) for SU(rl) (SU(rs)). In the beginning we can set, conventionally,

rl = r1, rs = r2, Nfl = Nf1, Nfs = Nf2; after a Seiberg duality on the gauge group

with the larger rank, the field theory is SU(2r2 − r1 + Nf1) × SU(r2), with again Nf1 and

Nf2 flavors respectively. In identifying which gauge group is now the larger and which

is the smaller, we have to exchange the labelling of the groups, so that we get r′l = r2,

r′s = 2r2 − r1 + Nf1, N ′
fl = Nf2 and N ′

fs = Nf1. The assumption leads to a RG flow which

is described by a cascade of Seiberg dualities, analogous to [9, 10]. In the UV the ranks

of the gauge groups are much larger than their disbalance, which is much larger than the

number of flavors. Hence the assumption of having beta functions with opposite sign is

justified in the ultraviolet flow of the field theory.

The supergravity background of section 3 is dual to a quiver gauge theory where

the cascade goes on until the IR, with nonperturbative dynamics at the end, as in the

Klebanov-Strassler solution.

In the background of section 4, the cascade does not take place anymore below some

value of the radial coordinate, and it asymptotes to the flavored Klebanov-Witten solu-

tion [23]. In the field theory, this reflects the fact that, because of a suitable choice of

the ranks, the last step of the cascade leads to a theory where the beta functions of both

gauge couplings are positive. The infrared dynamics is the one discussed in [23], but with

a quartic superpotential for the flavors.

The description of the duality cascade in our solutions and its interesting ultraviolet

behavior will be the content of the next section.

6. The cascade: supergravity side

We claim that our supergravity solutions are dual to the class of quiver gauge theories

with backreacting fundamental flavors introduced in the previous section. Indeed we will

show that the effective brane charges, the R-anomalies and the beta functions of the gauge

couplings that we can read from the supergravity solutions precisely match the picture of

5This is not the case for the chirally flavored version of Klebanov-Strassler’s theory proposed by

Ouyang [18], and for the flavored version of nonconformal theories obtained by putting branes at coni-

cal Calabi-Yau singularities [30]. In those realizations the superpotential is cubic, and the theory is not

self-similar under Seiberg duality: new gauge singlet fields appear or disappear after a Seiberg duality,

making the cascade subtler.
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a cascade of Seiberg dualities that we expect to describe the RG flow of the field theories,

generalizing the results of [9, 10] to gauge theories which include dynamical flavors.

6.1 Effective brane charges and ranks

By integrating fluxes over suitable compact cycles, we can compute three effective D-brane

charges in our solutions, which are useful to pinpoint the changes in the ranks of gauge

groups when the field theory undergoes a Seiberg duality: one of them (D7) is dual to

a quantity which is constant along the RG flow, whereas two of them (D3, D5) are not

independent of the holographic coordinate and are dual to the nontrivial part of the RG

flow. Recall that the (Maxwell) charges of D3- and D5-brane (Neff and Meff) for our ansatz

were already calculated in section 2 (see eqs. (2.16) and (2.17)). Let us now compute the

D7-brane charge, integrating (2.7) on a 2-manifold with boundary which is intersected

once by all the smeared D7-branes (e.g. D2: θ2 = const., ϕ2 = const., ψ = const.). This

charge is conserved along the RG flow because no fluxes appear on the right hand side

of (2.7). The D7-brane charge, which we interpret as the total number of flavors added to

the Klebanov-Strassler gauge theory, is indeed:

Nflav ≡ −
∫

D2

dF1 = Nf . (6.1)

Another important quantity is the integral of B2 over the nontrivial 2-cycle S2: θ1 = θ2 ≡ θ,

ϕ1 = 2π − ϕ2 ≡ ϕ, ψ = const.:

b0(τ) ≡ 1

4π2

∫

S2

B2 =
M

π

(

f sin2 ψ

2
+ k cos2 ψ

2

)

. (6.2)

This quantity is important because string theory is invariant as it undergoes a shift of 1.

For instance, in the KW background it amounts to a Seiberg duality, and the same happens

here. So we will shift this last quantity by one unit, identify a shift in the radial variable τ

that realizes the same effect, and see what happens to Meff and Neff . Actually, the cascade

will not work along the whole flow down to the IR but only in the UV asymptotic (below

the UV cut-off τ0 obviously). Notice that the same happens for the unflavored solutions

of [9] and [10]: in the KT solution one perfectly matches the cascade in field theory and

supergravity, while in the KS solution close to the tip of the warped deformed conifold the

matching is not so clean. On the other hand, this is expected, since the last step of the

cascade is not a Seiberg duality. Thus we will not be worried and compute the cascade

only in the UV asymptotic for large τ which also requires τ0 ≫ 1 (we neglect O(e−τ )): in

that regime the functions f and k become equal, and b0 is ψ-independent.

Actually, we will not compute the explicit shift in τ but rather the shift in the functions

f and k. We have:

b0(τ) → b0(τ
′) = b0(τ) − 1 =⇒

f(τ) → f(τ ′) = f(τ) − π

M

k(τ) → k(τ ′) = k(τ) − π

M

(6.3)
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Correspondingly, after a Seiberg duality step from τ to τ ′ < τ , that is going towards the

IR, we have:

Nf → Nf (6.4)

Meff(τ) → Meff(τ ′) = Meff(τ) − Nf

2
(6.5)

Neff(τ) → Neff(τ ′) = Neff(τ) − Meff(τ) +
Nf

4
(6.6)

This result is valid for all of our solutions.

We would like to compare this result with the action of Seiberg duality in field theory,

as computed in section 5. We need an identification between the brane charges computed

in supergravity and the ranks of the gauge and flavor groups in the field theory.

The field theory of interest for us, with gauge groups SU(rl) × SU(rs) (rl > rs), and

flavor groups SU(Nfl) and SU(Nfs) for the gauge groups SU(rl) and SU(rs) respectively, is

engineered, at least effectively at some radial distance, by the following objects: rl fractional

D3-branes of one kind (D5-branes wrapped on the shrinking 2-cycle), rs fractional D3-

branes of the other kind (D5-branes wrapped on the shrinking cycle, supplied with −1

quanta of gauge field flux on the 2-cycle), Nfs fractional D7-branes without gauge field

strength on the 2-cycle, and Nfl fractional D7-branes with −1 units of gauge field flux on

the shrinking 2-cycle. This description is good for b0 ∈ [0, 1].

This construction can be checked explicitly in the case of the C×C
2/Z2 orbifold [31, 32],

where one is able to quantize the open and closed string system for the case b0 = 1
2

that leads to a free CFT [33]. That is the N = 2 field theory which flows to the field

theory we are considering, when equal and opposite masses are given to the adjoint chiral

superfields (the geometric description of this relevant deformation is a blowup of the orbifold

singularity) [6, 34]. Fractional branes are those branes which couple to the twisted closed

string sector.6

Here we will consider a general background value for B2. In order to compute the

charges, we will follow quite closely the computations in [35].

We will compute the charges of D7-branes and wrapped D5-branes on the singular

conifold, described by z1z2 − z3z4 = 0. The D5 Wess-Zumino action is

SD5 = µ5

∫

M4×S2

{

C6 + (2πF2 + B2) ∧ C4

}

, (6.7)

where S2 is the only 2-cycle in the conifold, vanishing at the tip, that the D5-brane is

wrapping. We write also a world-volume gauge field F2 on S2. Then we expand:

B2 = 2πθBω2 θB = 2πb0 F2 = Φω2 , (6.8)

6Notice that one can build, out of a fractional D3 of one kind and a fractional D3 of the other kind, a

regular D3-brane (i.e. not coupled to the twisted sector) that can move outside the orbifold singularity; on

the contrary, there is no regular D7-brane: the two kinds of fractional D7-branes, extending entirely along

the orbifold, cannot bind into a regular D7-brane that does not touch the orbifold fixed locus and is not

coupled to the twisted sector [32].
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where ω2 is the 2-form on the 2-cycle, which satisfies
∫

S2 ω2 = 1. In this conventions, b0

has period 1, and Φ is quantized in 2πZ. We obtain (using µp(4π
2) = µp−2):

SD5 = µ5

∫

M4×S2

C6 +
µ3

2π

∫

M4

(Φ + θB)C4 . (6.9)

The first fractional D3-brane [36] is obtained with Φ = 0 and has D3-charge b0, D5-charge

1. The second fractional D3-brane is obtained either as the difference with a D3-brane,

or as an anti-D5-brane (global − sign in front) with Φ = −2π, and has D3-charge 1 − b0,

D5-charge -1. These charges are summarized in table 1.

Now consider a D7-brane along the surface z3 + z4 = 0. It describes a z1z2 + z2
3 = 0

inside the conifold, which is a copy of C
2/Z2. The D7 Wess-Zumino action is (up to a

curvature term considered below)

SD7 = µ7

∫

M4×Σ

{

C8 + (2πF2 + B2) ∧ C6 +
1

2
(2πF2 + B2) ∧ (2πF2 + B2) ∧ C4

}

. (6.10)

The surface Σ = C
2/Z2 has a vanishing 2-cycle at the origin. Since the conifold has only

one 2-cycle, these two must be one and the same and we can expand on Σ using ω2 again.

Moreover, being 2ω2 the Poincaré dual to the 2-cycle on Σ,

∫

Σ
ω2 ∧ α2 =

1

2

∫

S2

α2 (6.11)

holds for any closed 2-form α2. The fact that the Poincaré dual to the 2-cycle S2 on

Σ = C
2/Z2 is 2ω2 follows from our normalization

∫

S2 ω2 = 1 and from the self-intersection

number of the S2 living at the A1 singularity, namely:7

−2 = #(S2, S2) ≡ −
∫

Σ
(2ω2) ∧ (2ω2) . (6.12)

There is another contribution of induced D3-charge coming from the curvature cou-

pling [37]:
µ7

96
(2π)2

∫

M4×Σ
C4 ∧ TrR2 ∧R2 = −µ3

∫

M4×Σ
C4 ∧

p1(R)

48
. (6.13)

This can be computed in the following way. On K3 p1(R) = 48 and the induced D3-charge

is −1. In the orbifold limit K3 becomes T 4/Z2 which has 16 orbifold singularities, thus on

C
2/Z2 the induced D3-charge is −1/16. Putting all together we get:

SD7 = µ7

∫

M4×Σ
C8 +

µ5

4π

∫

M4×S2

(Φ + θB)C6 +
µ3

16π2

∫

M4

[

(Φ + θB)2 − π2
]

C4 . (6.14)

The second fractional D7-brane (the one that couples to the second gauge group) is obtained

with Φ = 0 and has D7-charge 1, D5-charge b0
2 and D3-charge (4b2

0 − 1)/16. With Φ = 2π

we get a non-SUSY or non-minimal object (see [36] for some discussion of this). The first

fractional D7-brane (coupled to the first gauge group) has Φ = −2π and has D7-charge 1,

D5-charge b0−1
2 and D3-charge (4(b0 − 1)2 − 1)/16. This is summarized in table 1. Which
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Object frac D3 (1) frac D3 (2) frac D7 (1) frac D7 (2)

D3-charge b0 1 − b0
4(b0 − 1)2 − 1

16

4b2
0 − 1

16

D5-charge 1 −1
b0 − 1

2

b0

2

D7-charge 0 0 1 1

Number of objects rl rs Nfl Nfs

Table 1: Charges of fractional branes on the conifold

fractional D7-brane provides flavors for the gauge group of which fractional D3-brane can

be determined from the orbifold case with b0 = 1
2 (compare with [32]).

Given these charges, we can compare with the field theory cascade. First of all we

construct the dictionary:

Nf = Nfl + Nfs, (6.15)

Meff = rl − rs +
b0 − 1

2
Nfl +

b0

2
Nfs, (6.16)

Neff = b0rl + (1 − b0)rs +
4(1 − b0)

2 − 1

16
Nfl +

4b2
0 − 1

16
Nfs. (6.17)

To derive this, we have only used that the brane configuration that engineers the field

theory we consider consists of rl fractional D3 of the 1st kind, rs fractional D3 of the 2nd

kind, Nfl fractional D7 of the 1st kind, and Nfs fractional D7 of the 2nd kind. Recall that,

by convention, rl > rs and Nfl (Nfs) are the flavors for SU(rl) (SU(rs)).

It is important to remember that b0 is defined modulo 1, and shifting b0 by one unit

amounts to go to a Seiberg dual description in the field theory. At any given energy scale

in the cascading gauge theory, there are infinitely many Seiberg dual descriptions of the

field theory, because Seiberg duality is exact along the RG flow [15]. Among these different

pictures, there is one which gives the best effective description of the field theory degrees

of freedom around that energy scale (this is also the description with positive squared

gauge couplings): it is the one where b0 has been redefined, by means of a large gauge

transformation, so that b0 ∈ [0, 1] (see subsection 6.2). This is the description that we will

use when we effectively engineer the field theory in terms of branes in some range of the

RG flow that lies between two adjacent Seiberg dualities.

In field theory, as before, we start with gauge group SU(r1) × SU(r2) and Nf1 flavors

for SU(r1), Nf2 flavors for SU(r2), with r1 > r2. The gauge group SU(r1) flows towards

strong coupling, and when its gauge coupling diverges we turn to a Seiberg dual description.

After the Seiberg duality on the larger gauge group, we get SU(2r2 − r1 + Nf1) × SU(r2),

and the flavor groups are left untouched.

7The minus sign on the right-hand side of (6.12) comes from the sign of the pulled-back volume form on

S2 and Σ.
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The effective D5- and D3-brane charges of a brane configuration that engineers this

field theory before the duality are:

Meff = r1 − r2 +
b0 − 1

2
Nf1 +

b0

2
Nf2 ,

Neff = b0r1 + (1 − b0)r2 +
4(1 − b0)

2 − 1

16
Nf1 +

4b2
0 − 1

16
Nf2 .

(6.18)

After the duality they become:

M ′
eff = −r2 + r1 − Nf1 +

b0 − 1

2
Nf2 +

b0

2
Nf1 = Meff − Nf

2
,

N ′
eff = b0r2 + (1 − b0)(2r2 − r1 + Nf1) +

4(1 − b0)
2 − 1

16
Nf2 +

4b2
0 − 1

16
Nf1 =

= Neff − Meff +
Nf

4
.

(6.19)

They exactly reproduce the SUGRA behavior (6.4)–(6.6). Notice that the matching of the

cascade between supergravity and field theory is there, irrespective of how we distribute

the flavors between the two gauge groups; so, from the three charges and the cascade we

are not able to determine how the flavors are distributed, but only their total number.

We conclude with some remarks. Even though the effective brane charges computed

in supergravity are running and take integer values only at some values of the holographic

coordinate, the ranks of gauge and flavor groups computed from them are constant and

integer (for suitable choice of the integration constants) in the whole range of radial co-

ordinate dual to the energy range where we use a specific field theory description. This

range of scales is b0 ∈ [0, 1] mod 1. At the boundaries of this region, we perform a Seiberg

duality and go into a new more effective description, and in particular if ranks are integer

before the duality, they still are after it; meanwhile we shift b0 by one unit. Hence the field

theory description of the cascade is perfectly matched by the ranks that we can compute

from our supergravity solution.

Notice also that the fact that Meff shifts by Nf/2 instead of Nf confirms that the

flavored version of the Klebanov-Strassler theory we are describing has nonchiral flavors

(with a quartic superpotential) rather than chiral flavors (with a cubic superpotential) like

in [18], where the shift goes with units of Nf .

Finally, we want to stress again that we are engineering a field theory with 4 objects,

but we have only 3 charges to recognize them. The comparison of the cascade between

SUGRA and field theory, surprisingly enough, does not help.

6.2 Seiberg duality as a large gauge transformation

We have argued in the previous subsection that a shift by a unit of the normalized flux b0

as we move towards the IR along the holographic direction is equivalent to performing a

Seiberg duality step on the field theory side (see equations (6.3)–(6.6)). Moreover, we have

checked that, under this shift of b0, the change of the effective (Maxwell) charges Meff and

Neff of supergravity is exactly the same as the one computed in the field theory engineered

with fractional branes on the singular conifold.
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In this subsection we will present an alternative way of understanding in supergravity

Seiberg duality at a fixed energy scale. As we know, for a given value of the holographic

coordinate τ , the value of b0 lies generically outside the interval [0, 1], where a good field

theory description exists. However, the flux of the B2 field is not a gauge invariant quantity

in supergravity and can be changed under a large gauge transformation. Indeed, let us

define Υ2 as the following two-form:

Υ2 =
1

2
(g1 ∧ g2 + g3 ∧ g4), (6.20)

and let us change B2 as follows:

B2 → B2 + ∆B2, ∆B2 = −πnΥ2, n ∈ Z. (6.21)

As dΥ2 = 0, the field strength H3 does not change and our transformation is a gauge

transformation of the NSNS field. However the flux of B2 does change as:

∫

S2

B2 →
∫

S2

B2 − 4π2n, (6.22)

or, equivalently b0 → b0−n. This non-invariance of the flux shows that this transformation

of B2 is a large gauge tranformation which cannot be globally written as ∆B2 = dΛ.

Moreover, as always happens with large gauge transformations, it is quantized. If we want

that our transformation (6.21) be a gauge transformation of supergravity, it should leave

the RR field strength F3 invariant. Defining the potential C2 as dC2 = F3 − B2 ∧ F1, we

see that dC2 must change as:

dC2 → dC2 +
nNf

4
g5 ∧ Υ2. (6.23)

One can verify that this change of dC2 can be obtained if the variation of C2 is (see

equations (2.9) and (4.7)):

∆C2 =
nNf

8

[

(ψ − ψ∗)(sin θ1dθ1 ∧ dϕ1 − sin θ2dθ2 ∧ dϕ2)− cos θ1 cos θ2dϕ1 ∧ dϕ2

]

, (6.24)

where ψ∗ is a constant. In the study of the R-symmetry anomaly of the next subsection it

will be convenient to know the change of C2 on the submanifold θ1 = θ2 = θ, ϕ1 = 2π−ϕ2 =

ϕ. Denoting by Ceff
2 the RR potential C2 restricted to this cycle, we get from (6.24) that:

∆Ceff
2 =

nNf

4
(ψ − ψ∗) sin θdθ ∧ dϕ. (6.25)

Let us now study how the Page charges change under these large gauge transformations.

From the expressions written in (2.26), we obtain:

∆QPage
D5 = − 1

4π2

∫

S3

∆B2 ∧ F1,

∆QPage
D3 =

1

(4π2)2

∫

M5

(

− ∆B2 ∧ F3 + ∆B2 ∧ B2 ∧ F1 +
1

2
∆B2 ∧ ∆B2 ∧ F1

)

.

(6.26)
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By using in (6.26) our ansatz for F3 and B2 (2.9), together with the expression of ∆B2

given in (6.21) as well as the relations (2.27) and (2.31), one readily gets:

∆QPage
D5 = n

Nf

2
,

∆QPage
D3 = nM + n2 Nf

4
.

(6.27)

Thus, under a large gauge transformation (6.21) with n = 1, the Page charges transform

as:

QPage
D5 → QPage

D5 +
Nf

2
,

QPage
D3 → QPage

D3 + M +
Nf

4
.

(6.28)

Recall that for our ansatz QPage
D5 = M and QPage

D3 = N0 (see eqs. (2.30) and (2.34)). Thus,

eq. (6.28) gives how these constants change under a large gauge transformation. At a

given holographic scale τ we should perform as many large transformations as needed

to have b0 ∈ [0, 1]. Given that b0 grows when the holographic coordinate increases, the

transformation (6.28) should correspond to the change of ranks under a Seiberg duality

when we flow towards the UV. By comparing (6.28) with our previous expressions one can

show that this is the case. Actually, one can get an explicit expression of QPage
D5 and QPage

D3

in terms of the ranks rl and rs and the number of flavors Nfl and Nfs. In order to verify

this fact, let us suppose that we are in a region of the holographic coordinate such that

the two functions f and k of our ansatz are equal. Notice that for the flavored KS solution

this happens in the UV, while for the flavored KT this condition holds for all values of the

radial coordinate. If f = k the normalized flux b0 in (6.2) can be written as:

b0(τ) =
M

π
f(τ). (6.29)

Using this expression we can write the D5-brane Page charge (2.29) as:

QPage
D5 = Meff − Nf

2
b0 . (6.30)

Notice also that the supergravity expression (2.17) of Meff can be written when f = k as:

Meff = M +
Nf

2
b0. (6.31)

Let us next assume that we have chosen our gauge such that, at the given holographic

scale, b0 ∈ [0, 1]. In that case we can use the value of Meff obtained by the field theory

calculation of subsection 6.1 to evaluate the Page charge QPage
D5 . Actually, by plugging the

value of Meff given in (6.16) on the right-hand side of (6.30) we readily get the following

relation between QPage
D5 and the field theory data:

QPage
D5 = rl − rs −

Nfl

2
. (6.32)
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Similarly, for f = k, one can express the D3-brane Page charge (2.33) as:

QPage
D3 = Neff − b0M − b2

0

4
Nf , (6.33)

which, after using the relation (6.31), can be written in terms of Meff as:

QPage
D3 = Neff − b0Meff +

Nf

4
b2
0. (6.34)

Again, if we assume that b0 ∈ [0, 1] and use the field theory expressions (6.17) and (6.16)

of Neff and Meff , we get:

QPage
D3 = rs +

3Nfl − Nfs

16
. (6.35)

Notice that, as it should, the expressions (6.32) and (6.35) of QPage
D5 and QPage

D3 that we

have just found are independent of b0, as far as b0 ∈ [0, 1]. Moreover, one can verify that

under a field theory Seiberg duality the right-hand sides of (6.32) and (6.35) transform as

the left-hand sides do under a large gauge transformation of supergravity.

Finally, let us point out that in this approach Seiberg duality is performed at a fixed

energy scale and Meff and Neff are left invariant (recall that Maxwell charges are gauge

invariant). Indeed, by looking at our ansatz for B2 one easily concludes that the change of

B2 written in (6.21) is equivalent to the following change in the functions f and k

f → f − π

M
n, k → k − π

M
n, (6.36)

and one can verify that the changes (6.27) and (6.36) leave the expressions of Meff and

Neff , as written in eqs. (2.29) and (2.33), invariant. From eqs. (6.32) and (6.35) it is clear

that the Page charges provide a clean way to extract the ranks and number of flavors of

the corresponding (good) field theory dual at a given energy scale. Actually, the ranks of

this good field theory description change as step-like functions along the RG flow, due to

the fact that b0 varies continuosly and needs to suffer a large gauge transformation every

time that, flowing towards the IR, it reaches the value b0 = 0 in the good gauge. This large

gauge transformation changes QPage
D5 and QPage

D3 in the way described above, which realizes

in supergravity the change of the ranks under a Seiberg duality in field theory.

Let us now focus on a different way of matching the behavior of the field theory and

our solutions.

6.3 R-symmetry anomalies and β-functions

We can compute the β-functions (up to the energy-radius relation) and the R-symmetry

anomalies for the two gauge groups both in supergravity and in field theory in the spirit

of [32, 38, 39]. In the UV, where the cascade takes place, they nicely match. For the

comparison we make use of the following holographic formulae, which can be derived in

the N = 2 orbifold case by looking at the Lagrangian of the low energy field theory living
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on probe (fractional) D3-branes:8

4π2

g2
l

+
4π2

g2
s

= πe−φ

4π2

g2
l

− 4π2

g2
s

=
e−φ

2π

[

∫

S2

B2 − 2π2 (mod 4π2)
]

θYM
l + θYM

s = −2πC0

θYM
l − θYM

s =
1

π

∫

S2

C2 .
(6.37)

Strictly speaking, these formulae need to be corrected for small values of the gauge

couplings and are only valid in the large ’t Hooft coupling regime (see [40, 15, 12, 23]),

which is the case under consideration. Moreover, they give positive squared couplings only

if b0 = 1
4π2

∫

S2 B2 is in the range [0, 1]. This is the physical content of the cascade: at a

given energy scale we must perform a large gauge transformation on B2 in supergravity

to shift
∫

B2 by a multiple of 4π2 to get a field theory description with positive squared

couplings.

We have adapted the indices in (6.37) to the previous convention for the gauge group

with the larger (the smaller) rank. Let us restrict our attention to an energy range, between

two subsequent Seiberg dualities, where a field theory description in terms of specific ranks

holds. In this energy range the gauge coupling gl of the gauge group with larger rank flows

towards strong coupling, while the gauge coupling gs of the gauge group with smaller rank

flows towards weak coupling. Indeed, as formulae (6.37) confirm, the coupling gl was not

touched by the previous Seiberg duality, starts different from zero and flows to ∞ at the

end of this range, where a Seiberg duality on its gauge group is needed. The coupling gs of

the gauge group with smaller rank is the one which starts very large (actually divergent)

after the previous Seiberg duality on its gauge group, and then flows toward weak coupling.

In supergravity, due to the presence of magnetic sources for F1, we cannot define a

potential C0. Therefore we project our fluxes on the submanifold θ1 = θ2 ≡ θ, ϕ1 =

2π − ϕ2 ≡ ϕ, ∀ψ, τ before integrating them. Recalling that F3 = dC2 + B2 ∧ F1, what we

get from (2.8)–(2.9) (in the UV limit) are the effective potentials

Ceff
0 =

Nf

4π
(ψ − ψ∗

0) C̃eff
2 =

[

M

2
+

nNf

4

]

(ψ − ψ∗
2) sin θdθ ∧ dϕ . (6.38)

The integer n in C̃eff
2 comes from a large gauge transformation on B2 (Seiberg duality

in field theory, see eq. (6.25)) which shifts b0(τ) ∈ [n, n + 1] by n units - so that the

gauge transformed b̃0(τ) = b0(τ) − n is between 0 and 1 - and at the same time shifts

dCeff
2 → dC̃eff

2 = dCeff
2 + πn

Nf

4π sin θdθ ∧ dϕ ∧ dψ, since F3 is gauge-invariant, but leaves C0

invariant.

8We are not completely sure about the sign in the formula relating C0 to the sum of the theta angles. At

any rate, with the minus sign we can match the anomaly computations in field theory and in supergravity

for the flavored version of Klebanov-Witten’s theory proposed in [18] (with backreaction of the flavor

branes only at first order) and in [23] (fully backreacting D7-branes). The field theory computation gives

δε(θ1 + θ2) = −Nfε, which can only be matched with the supergravity results of the two papers using this

formula.
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The field theory possesses an anomalous R-symmetry which assigns charge 1
2 to all

chiral superfields.9 The field theory R-anomalies are easily computed. Continuing to use

rl (rs) for the larger (smaller) group rank and Nfl (Nfs) for the corresponding flavors (see

figure 1), the anomalies under a U(1)R rotation of parameter ε are:

Field theory:
δεθl = [2(rl − rs) − Nfl]ε

δεθs = [−2(rl − rs) − Nfs]ε .
(6.39)

Along the cascade of Seiberg dualities, the coefficients of the anomalies for the two gauge

groups change when we change the effective description; what does not change is the

unbroken subgroup of the R-symmetry group. Because we want to match them with the

supergravity computations, it will be convenient to rewrite the field theory anomalies in

the following form:

Field theory:
δε(θl + θs) = −Nfε

δε(θl − θs) = [4(rl − rs) + Nfs − Nfl]ε .
(6.40)

An infinitesimal U(1)R rotation parameterized by ε in field theory corresponds to a shift

ψ → ψ + 2ε in the geometry. Therefore, making use of (6.38), we find on the supergravity

side:

SUGRA:
δε(θl + θs) = −Nfε

δε(θl − θs) = [4M + 2nNf ]ε .
(6.41)

These formulae agree with those computed in the field theory. For the difference of the

anomalies, what we can compute and compare is its change after a step in the duality

cascade. Notice indeed that the difference of the anomalies, as computed in (6.41), gives

a step function: as we flow towards the IR, after some energy scale (the scale of a Seiberg

duality along the cascade) we need to perform a large gauge transformation in supergravity

to turn to the correct Seiberg dual description of the field theory (the only one with positive

squared gauge couplings). This corresponds to changing n → n − 1 in (6.41), therefore

the coefficient of the difference of the R-anomalies decreases by 2Nf units. This result is

reproduced exactly by the field theory computation (6.40). In field theory the difference of

the anomalies depends on the quantity 4(rl−rs)+Nfs−Nfl. Keeping the same conventions

adopted in subsection 5.1 and repeating the same reasoning, it is easy to see that after a

step of the cascade towards the IR, this quantity decreases exactly by 2Nf units.

The dictionary (6.37) allows us also to compute the β-functions of the two gauge

couplings and check further the picture of the duality cascade.

Since we will be concerned in the cascade, we will make use of the flavored Klebanov-

Tseytlin solution of section 4, to which the flavored Klebanov-Strassler solution of section 3

reduces in the UV limit.

We shall keep in mind that, at a fixed value of the radial coordinate, we want to shift

b0 = 1
4π2

∫

S2 B2 by means of a large gauge transformation in supergravity in such a way

9Although the R-charges of the chiral superfields are half-integer, an R-rotation of parameter ε = 2π

coincides with a baryonic rotation of parameter α = π. It follows that U(1)R × U(1)B is parameterized by

ε ∈ [0, 2π], α ∈ [0, 2π].
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that its gauge transformed b̃0 = b0 − [b0] ≡ b0 − n10 belongs to [0, 1]: in doing so, we are

guaranteed to be using the good description in terms of a field theory with positive squared

gauge couplings.

Recall that

e−φ =
3Nf

4π
(−ρ) (6.42)

b0 =
2M

Nf

(

Γ

ρ
− 1

)

, (6.43)

and the dictionary (6.37), that we rewrite as:

8π2

g2
+

≡ 8π2

g2
l

+
8π2

g2
s

= 2πe−φ (6.44)

8π2

g2
−

≡ 8π2

g2
l

− 8π2

g2
s

= 2πe−φ(2b̃0 − 1) , (6.45)

where b̃0 ≡ b0 − [b0] ∈ [0, 1] comes from integrating on the two-cycle the suitably gauge

transformed Kalb-Ramond potential which must be used in order to describe the correct

field theory effective degrees of freedom at the energy scale dual to the value of the radial

coordinate.

Then we can compute the following ‘radial’ β-functions from the gravity dual:

β
(ρ)
+ ≡ β

(ρ)
8π2

g2
+

≡ d

dρ

8π2

g2
+

(6.46)

β
(ρ)
− ≡ β

(ρ)
8π2

g2
−

≡ d

dρ

8π2

g2
−

, (6.47)

and we would like to match these with the field theory computations.

Using the expressions (6.44)–(6.45), we can conclude that

β
(ρ)
+ = −3

Nf

2
(6.48)

β
(ρ)
− = 3

(

Nf

2
+ Q

)

, (6.49)

where Q = Nf [b0(ρ)] + 2M = Nfn(ρ) + 2M is a quantity which undergoes a change

Q → Q − Nf as b0(ρ) → b0(ρ
′) = b0(ρ) − 1 (one Seiberg duality step along the cascade

towards the IR), or equivalently n(ρ) → n(ρ′) = n(ρ) − 1. Up to an overall factor of 2, Q

is the same quantity appearing in the difference of the R-anomalies in (6.41).

The field theory computations of the β-functions give:

βl ≡ β 8π2

g2
l

= 3rl − 2rs(1 − γA) − Nfl(1 − γq) (6.50)

βs ≡ β 8π2

g2
s

= 3rs − 2rl(1 − γA) − Nfs(1 − γq) , (6.51)

10n is a step-like function of the radial coordinate.
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with the usual conventions. Hence

β+ ≡ βl + βs = (rl + rs)(1 + 2γA) − Nf (1 − γq) (6.52)

β− ≡ βl − βs = (5 − 2γA)(rl − rs) + (Nfs − Nfl)(1 − γq) . (6.53)

In order to match the above quantities with the gravity computations (6.48)–(6.49), an

energy-radius relation is required. This is something we miss here. Although it is not

really needed to extract from our supergravity solutions the qualitative information on the

running of the gauge couplings, we are going initially to make two assumptions, which

can be viewed as an instructive simplification. Let us then assume that the radius-energy

relation is ρ = ln µ
EUV

, where EUV is the scale of the UV cutoff dual to the maximal value of

the radial coordinate ρ = 0, and that the anomalous dimensions do not acquire subleading

corrections. Matching β+ implies γA = γq = −1
2 . Matching β−, once we insert these

anomalous dimensions, implies that Q = 2(rl − rs)−Nfl. This quantity correctly shifts as

Q → Q − Nf when b0 → b0 − 1. This last observation allows us to check the consistency

of the cascade of Seiberg dualities also against the running of the gauge couplings.

Actually, the qualitative picture of the RG flow in the UV can be extracted from our

supergravity solution even without knowing the precise radius-energy relation, but simply

recalling that the radius must be a monotonic function of the energy scale.

It is interesting to notice the following phenomenon: as we flow up in energy and ap-

proach the far UV ρ → 0− in (6.43), a large number of Seiberg dualities is needed to keep b0

varying in the interval [0, 1]. The Seiberg dualities pile up the more we approach the UV cut-

off EUV . Meanwhile, formula (6.49) reveals that, when going towards the UV cutoff EUV ,

the ‘slope’ in the plots of 1
g2

i

versus the energy scale becomes larger and larger, and (6.48)

reveals that the sum of the inverse squared gauge coupling goes to zero at this UV cutoff.

At the energy scale EUV the effective number of degrees of freedom needed for a weakly

coupled description of the gauge theory becomes infinite. Since ρ = 0 is at finite proper

radial distance from any point placed in the interior ρ < 0, EUV is a finite energy scale.

The picture which stems from our flavored Klebanov-Tseytlin/Strassler solution is that

EUV is a so-called “Duality Wall”, namely an accumulation point of energy scales at which

a Seiberg duality is required in order to have a weakly coupled description of the gauge

theory [27]. Above the duality wall, Seiberg duality does not proceed and a weakly coupled

dual description of the field theory is not known. See figure 2.

Duality walls were studied in the context of quiver gauge theories first by Fiol [41]

and later in a series of papers by Hanany and collaborators [42]. Their analysis of this

phenomenon was in the framework of quiver gauge theories with only bifundamental chiral

superfields, and was restricted to the field theory.

To our knowledge, our solutions are the first explicit realizations of this exotic ultra-

violet phenomenon on the supergravity side of the gauge/gravity correspondence.

7. Final remarks

In this paper we have presented a very precise example of the duality between field theories

with flavors and string solutions that include the dynamics of (flavor) branes. We focused
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LogΜ

1
��������
g2

Figure 2: Qualitative plot of the running gauge couplings as functions of the logarithm of the

energy scale in our cascading gauge theory. The blue lines are the inverse squared gauge couplings,

while the red line is their sum.

on the Klebanov-Tseytlin/Strassler case, providing a well defined dual field theory, together

with different matchings that include the cascade of Seiberg dualities, beta functions and

anomalies. Indeed, we have shown in detail how the ranks of the gauge groups change from

a string theory viewpoint (in perfect agreement with the usual field theory prescription),

providing also a rigorous definition of the gauge groups ranks in terms of Page charges.

We have also shown how the runnings of the gauge couplings are matched by the string

background and how global anomalies are also captured by our solution.

In a future publication [24], we will present many details concerning the brane embed-

ding and dual field theory. We will also provide more general solutions to our system of

BPS equations and analyze the details of their dual dynamics. The interesting IR dynamics

(the last steps of the cascade, leading to a baryonic branch of the field theory, behavior of

the Wilson loop, etc) will also be spelled out in detail in the forthcoming paper mentioned

above.

Many other things can be done with the solution presented here. The study of implica-

tions of these new backgrounds to cosmology and D-brane inflation seems a natural project.

On the supergravity side, finding new solutions describing the motion along the baryonic

branch of this field theory [14], finding and studying the dynamics of the massless Gold-

stone mode (that should exist) [11]; what determines the dual to baryonic operators and

their VEV [13] and of course, the possibility of softly breaking SUSY and studying the new

dynamics [43], are some of the ideas that naturally come to mind given these new solutions.
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[23] F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Unquenched flavors in the

Klebanov-Witten model, JHEP 02 (2007) 090 [hep-th/0612118].

[24] F. Benini, F. Canoura, S. Cremonesi, C. Nunez and A.V. Ramallo, in preparation.

[25] D. Marolf, Chern-Simons terms and the three notions of charge, hep-th/0006117.

[26] D.D. Page, Classical stability of round and squashed seven-spheres in eleven-dimensional

supergravity, Phys. Rev. 28 (1983) 2976.

[27] M.J. Strassler, Duality in supersymmetric field theory: General conceptual background and an

application to real particle physics, prepared for International Workshop on Perspectives of

Strong Coupling Gauge Theories (SCGT 96), Nagoya, Japan, 13-16 Nov 1996.

[28] F. Benini, S. Cremonesi, R. Tatar, in preparation.

[29] N. Seiberg, Electric-magnetic duality in supersymmetric nonabelian gauge theories, Nucl.

Phys. B 435 (1995) 129 [hep-th/9411149].

[30] S. Franco and A.M. Uranga, Dynamical SUSY breaking at meta-stable minima from D-branes

at obstructed geometries, JHEP 06 (2006) 031 [hep-th/0604136].

[31] M. Bertolini et al., Fractional D-branes and their gauge duals, JHEP 02 (2001) 014

[hep-th/0011077].

[32] M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda and R. Marotta, N = 2 gauge theories on

systems of fractional D3/D7 branes, Nucl. Phys. B 621 (2002) 157 [hep-th/0107057].

[33] P.S. Aspinwall, Enhanced gauge symmetries and K3 surfaces, Phys. Lett. B 357 (1995) 329

[hep-th/9507012].

[34] D.R. Morrison and M.R. Plesser, Non-spherical horizons. I, Adv. Theor. Math. Phys. 3

(1999) 1 [hep-th/9810201].

[35] M. Graña and J. Polchinski, Gauge/gravity duals with holomorphic dilaton, Phys. Rev. D 65

(2002) 126005 [hep-th/0106014].

– 31 –

http://arxiv.org/abs/hep-th/0505153
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB117%2C519
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB117%2C519
http://jhep.sissa.it/stdsearch?paper=06%282002%29043
http://arxiv.org/abs/hep-th/0205236
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB699%2C207
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB699%2C207
http://arxiv.org/abs/hep-th/0311084
http://jhep.sissa.it/stdsearch?paper=03%282005%29014
http://arxiv.org/abs/hep-th/0411097
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C086005
http://arxiv.org/abs/hep-th/0602027
http://jhep.sissa.it/stdsearch?paper=12%282006%29032
http://arxiv.org/abs/hep-th/0610270
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C55%2C678
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C55%2C678
http://arxiv.org/abs/hep-th/0701059
http://jhep.sissa.it/stdsearch?paper=02%282007%29090
http://arxiv.org/abs/hep-th/0612118
http://arxiv.org/abs/hep-th/0006117
http://www.slac.stanford.edu/spires/find/hep/www?irn=4969456
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB435%2C129
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB435%2C129
http://arxiv.org/abs/hep-th/9411149
http://jhep.sissa.it/stdsearch?paper=06%282006%29031
http://arxiv.org/abs/hep-th/0604136
http://jhep.sissa.it/stdsearch?paper=02%282001%29014
http://arxiv.org/abs/hep-th/0011077
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB621%2C157
http://arxiv.org/abs/hep-th/0107057
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB357%2C329
http://arxiv.org/abs/hep-th/9507012
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C3%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C3%2C1
http://arxiv.org/abs/hep-th/9810201
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C126005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C126005
http://arxiv.org/abs/hep-th/0106014


J
H
E
P
0
9
(
2
0
0
7
)
1
0
9

[36] J. Polchinski, N = 2 gauge-gravity duals, Int. J. Mod. Phys. A 16 (2001) 707

[hep-th/0011193].

[37] M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys. B

463 (1996) 420 [hep-th/9511222].

[38] I.R. Klebanov, P. Ouyang and E. Witten, A gravity dual of the chiral anomaly, Phys. Rev. D

65 (2002) 105007 [hep-th/0202056].

[39] M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda and R. Marotta, More anomalies from

fractional branes, Phys. Lett. B 540 (2002) 104 [hep-th/0202195].

[40] S. Benvenuti and A. Hanany, Conformal manifolds for the conifold and other toric field

theories, JHEP 08 (2005) 024 [hep-th/0502043].

[41] B. Fiol, Duality cascades and duality walls, JHEP 07 (2002) 058 [hep-th/0205155].

[42] A. Hanany and J. Walcher, On duality walls in string theory, JHEP 06 (2003) 055

[hep-th/0301231];

S. Franco, A. Hanany, Y.-H. He and P. Kazakopoulos, Duality walls, duality trees and

fractional branes, hep-th/0306092.

[43] S. Kuperstein and J. Sonnenschein, Analytic non-supersymmetric background dual of a

confining gauge theory and the corresponding plane wave theory of hadrons, JHEP 02 (2004)

015 [hep-th/0309011];

M. Schvellinger, Glueballs, symmetry breaking and axionic strings in non-supersymmetric

deformations of the Klebanov-Strassler background, JHEP 09 (2004) 057 [hep-th/0407152].

– 32 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA16%2C707
http://arxiv.org/abs/hep-th/0011193
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB463%2C420
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB463%2C420
http://arxiv.org/abs/hep-th/9511222
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C105007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C105007
http://arxiv.org/abs/hep-th/0202056
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB540%2C104
http://arxiv.org/abs/hep-th/0202195
http://jhep.sissa.it/stdsearch?paper=08%282005%29024
http://arxiv.org/abs/hep-th/0502043
http://jhep.sissa.it/stdsearch?paper=07%282002%29058
http://arxiv.org/abs/hep-th/0205155
http://jhep.sissa.it/stdsearch?paper=06%282003%29055
http://arxiv.org/abs/hep-th/0301231
http://arxiv.org/abs/hep-th/0306092
http://jhep.sissa.it/stdsearch?paper=02%282004%29015
http://jhep.sissa.it/stdsearch?paper=02%282004%29015
http://arxiv.org/abs/hep-th/0309011
http://jhep.sissa.it/stdsearch?paper=09%282004%29057
http://arxiv.org/abs/hep-th/0407152

